Rehabilitation Robotics gives an introduction and overview of all areas of rehabilitation robotics, perfect for anyone new to the field. It also summarizes available robot technologies and their application to different pathologies for skilled researchers and clinicians. The editors have been involved in the development and application of robotic devices for neurorehabilitation for more than 15 years. This experience using several commercial devices for robotic rehabilitation has enabled them to develop the know-how and expertise necessary to guide those seeking comprehensive understanding of this topic.
Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as ‘optimal’ trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other’s dynamics.
- Provides a comprehensive review of recent developments in the area of rehabilitation robotics
- Includes information on both therapeutic and assistive robots
- Focuses on the state-of-the-art and representative advancements in the design, control, analysis, implementation and validation of rehabilitation robotic systems
- 목차 -
1. Physiological basis of neuromotor recovery
2. An overall framework for neurorehabilitation robotics: implications for recovery
3. Biomechatronic design criteria of systems for robot-mediated rehabilitation therapy
4. Actuators and sensors for rehabilitation and prosthetic robots
5. Assistive controllers and modalities for robot-aided neurorehabilitation
6. Exoskeletons for upper limb rehabilitation
7. Exoskeletons for lower limb rehabilitation
8. Performance measures in robot-assisted assessment of sensorimotor functions
9. Computational models of the recovery process in robot-assisted training
10. Control of rehabilitation robots: from guidance to interaction
11. Promoting motivation during robot-assisted rehabilitation
12. Software platforms for integrating robots and virtual environments
13. Twenty+ Years of Robotics for Upper Extremity Rehabilitation following a Stroke
14. Three-dimensional, task-specific robot therapy
15. Robot-assisted therapy of hand function
16. Robot-assisted gait training
17. Wearable robotic applications for neurorehabilitation
18. Robot–assisted rehabilitation in multiple sclerosis
19. Robots for cognitive rehabilitation and symptom management
20. Hybrid NMES-robot devices for training of activities of daily living
21. Robotic techniques for evaluation and training of proprioceptive deficits
22. Psychophysiological responses during robot-assisted rehabilitation
23. The role of muscle synergies in robot-assisted neurorehabilitation
24. Telerehabilitation Robotics